Kubernetes 中手动安装 Prometheus
我们知道监控是保证系统运行必不可少的功能,特别是对于 Kubernetes 这种比较庞大的系统来说,监控报警更是不可或缺,我们需要时刻了解系统的各种运行指标,也需要时刻了解我们的 Pod 的各种指标,更需要在出现问题的时候有报警信息通知到我们。
在早期的版本中 Kubernetes 提供了 heapster、influxDB、grafana 的组合来监控系统,在现在的版本中已经移除掉了 heapster,现在更加流行的监控工具是 Prometheus,Prometheus 是 Google 内部监控报警系统的开源版本,是 Google SRE 思想在其内部不断完善的产物,它的存在是为了更快和高效的发现问题,快速的接入速度,简单灵活的配置都很好的解决了这一切,而且是已经毕业的 CNCF 项目。
概述
Prometheus 最初是 SoundCloud 构建的开源系统监控和报警工具,是一个独立的开源项目,于2016年加入了 CNCF 基金会,作为继 Kubernetes 之后的第二个托管项目。Prometheus 相比于其他传统监控工具主要有以下几个特点:
- 具有由 metric 名称和键/值对标识的时间序列数据的多维数据模型
- 有一个灵活的查询语言
- 不依赖分布式存储,只和本地磁盘有关
- 通过 HTTP 的服务拉取时间序列数据
- 也支持推送的方式来添加时间序列数据
- 还支持通过服务发现或静态配置发现目标
- 多种图形和仪表板支持
Prometheus 由多个组件组成,但是其中有些组件是可选的:
Prometheus Server
:用于抓取指标、存储时间序列数据exporter
:暴露指标让任务来抓pushgateway
:push 的方式将指标数据推送到该网关alertmanager
:处理报警的报警组件adhoc
:用于数据查询
大多数 Prometheus 组件都是用 Go 编写的,因此很容易构建和部署为静态的二进制文件。下图是 Prometheus 官方提供的架构及其一些相关的生态系统组件:
整体流程比较简单,Prometheus 直接接收或者通过中间的 Pushgateway 网关被动获取指标数据,在本地存储所有的获取的指标数据,并对这些数据进行一些规则整理,用来生成一些聚合数据或者报警信息,Grafana 或者其他工具用来可视化这些数据。
安装
由于 Prometheus 是 Golang 编写的程序,所以要安装的话也非常简单,只需要将二进制文件下载下来直接执行即可,前往地址:https://prometheus.io/download 下载最新版本即可。
Prometheus 是通过一个 YAML 配置文件来进行启动的,如果我们使用二进制的方式来启动的话,可以使用下面的命令:
$ ./prometheus --config.file=prometheus.yml
其中 prometheus.yml
文件的基本配置如下:
global:
scrape_interval: 15s
evaluation_interval: 15s
rule_files:
# - "first.rules"
# - "second.rules"
scrape_configs:
- job_name: prometheus #监控 prometheus 本身
static_configs:
- targets: ['localhost:9090']
上面这个配置文件中包含了3个模块:global
、rule_files
和 scrape_configs
。
global
模块控制Prometheus Server
的全局配置:scrape_interval
:表示 prometheus 抓取指标数据的频率,默认是15s,我们可以覆盖这个值evaluation_interval
:用来控制评估规则的频率,prometheus 使用规则产生新的时间序列数据或者产生警报
rule_files
:指定了报警规则所在的位置,prometheus 可以根据这个配置加载规则,用于生成新的时间序列数据或者报警信息,当前我们没有配置任何报警规则。scrape_configs
用于控制 prometheus 监控哪些资源。
由于 prometheus 通过 HTTP 的方式来暴露的它本身的监控数据,prometheus 也能够监控本身的健康情况。在默认的配置里有一个单独的 job,叫做 prometheus,它采集 prometheus 服务本身的时间序列数据。这个 job 包含了一个单独的、静态配置的目标:监听 localhost 上的 9090 端口。prometheus 默认会通过目标的 /metrics
路径采集 metrics。所以,默认的 job 通过 URL:http://localhost:9090/metrics
采集 metrics。收集到的时间序列包含 prometheus 服务本身的状态和性能。如果我们还有其他的资源需要监控的话,直接配置在 scrape_configs
模块下面就可以了。
由于我们这里是要运行在 Kubernetes 系统中,所以我们直接用 Docker 镜像的方式运行。
Note
为了方便管理,我们将监控相关的所有资源对象都安装在
kube-mon
这个 namespace 下面,没有的话可以提前创建。
创建 kube-mon
命令空间
[root@k8s-master ~]# kubectl create namespace kube-mon
namespace/kube-mon created
把用到的资源文件统一放到 prometheus
目录下
mkdir ~/prometheus && cd prometheus
为了能够方便的管理配置文件,我们这里将 prometheus.yml
文件用 ConfigMap 的形式进行管理:prometheus-cm.yaml
apiVersion: v1
kind: ConfigMap
metadata:
name: prometheus-config
namespace: kube-mon
data:
prometheus.yml: |
global:
scrape_interval: 15s
scrape_timeout: 15s
scrape_configs:
- job_name: 'prometheus'
static_configs:
- targets: ['localhost:9090']
我们这里暂时只配置了对 prometheus 本身的监控,直接创建该资源对象:
[root@k8s-master prometheus]# kubectl apply -f prometheus-cm.yaml
configmap/prometheus-config created
配置文件创建完成了,以后如果我们有新的资源需要被监控,我们只需要将上面的 ConfigMap 对象更新即可。现在我们来创建 prometheus 的 Pod 资源:prometheus-deploy.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: prometheus
namespace: kube-mon
labels:
app: prometheus
spec:
selector:
matchLabels:
app: prometheus
template:
metadata:
labels:
app: prometheus
spec:
serviceAccountName: prometheus
containers:
- image: prom/prometheus:v2.4.3
name: prometheus
command:
- "/bin/prometheus"
args:
- "--config.file=/etc/prometheus/prometheus.yml"
- "--storage.tsdb.path=/prometheus"
- "--storage.tsdb.retention=24h"
- "--web.enable-admin-api" # 控制对admin HTTP API的访问,其中包括删除时间序列等功能
- "--web.enable-lifecycle" # 支持热更新,直接执行localhost:9090/-/reload立即生效
ports:
- containerPort: 9090
protocol: TCP
name: http
volumeMounts:
- mountPath: "/prometheus"
name: data
subPath: prometheus
- mountPath: "/etc/prometheus"
name: config-volume
resources:
requests:
cpu: 100m
memory: 512Mi
limits:
cpu: 100m
memory: 512Mi
securityContext:
runAsUser: 0
volumes:
- name: data
persistentVolumeClaim:
claimName: prometheus
- configMap:
name: prometheus-config
name: config-volume
我们在启动程序的时候,除了指定了 prometheus.yml 文件之外,还通过参数storage.tsdb.path
指定了 TSDB 数据的存储路径、通过storage.tsdb.retention
设置了保留多长时间的数据,还有下面的web.enable-admin-api
参数可以用来开启对 admin api 的访问权限,参数web.enable-lifecycle
非常重要,用来开启支持热更新的,有了这个参数之后,prometheus.yml 配置文件只要更新了,通过执行localhost:9090/-/reload
就会立即生效,所以一定要加上这个参数。
我们这里将 prometheus.yml 文件对应的 ConfigMap 对象通过 volume 的形式挂载进了 Pod,这样 ConfigMap 更新后,对应的 Pod 里面的文件也会热更新的,然后我们再执行上面的 reload 请求,Prometheus 配置就生效了,除此之外,为了将时间序列数据进行持久化,我们将数据目录和一个 pvc 对象进行了绑定,所以我们需要提前创建好这个 pvc 对象:prometheus-volume.yaml
apiVersion: v1
kind: PersistentVolume
metadata:
name: prometheus
spec:
capacity:
storage: 10Gi
accessModes:
- ReadWriteOnce
persistentVolumeReclaimPolicy: Recycle
nfs:
server: 172.31.0.2 # NFS 服务器地址
path: /nfs/data/ # NFS 服务器共享的目录
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: prometheus
namespace: kube-mon
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 10Gi
我们这里简单的通过 NFS 作为存储后端创建一个 pv、pvc 对象:
[root@k8s-master prometheus]# kubectl create -f prometheus-volume.yaml
persistentvolume/prometheus created
persistentvolumeclaim/prometheus created
除了上面的注意事项外,我们这里还需要配置 rbac 认证,因为我们需要在 prometheus 中去访问 Kubernetes 的相关信息,所以我们这里管理了一个名为 prometheus 的 serviceAccount 对象:prometheus-rbac.yaml
apiVersion: v1
kind: ServiceAccount
metadata:
name: prometheus
namespace: kube-mon
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: prometheus
rules:
- apiGroups:
- ""
resources:
- nodes
- services
- endpoints
- pods
- nodes/proxy
verbs:
- get
- list
- watch
- apiGroups:
- ""
resources:
- configmaps
- nodes/metrics
verbs:
- get
- nonResourceURLs:
- /metrics
verbs:
- get
---
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
name: prometheus
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: prometheus
subjects:
- kind: ServiceAccount
name: prometheus
namespace: kube-mon
由于我们要获取的资源信息,在每一个 namespace 下面都有可能存在,所以我们这里使用的是 ClusterRole 的资源对象,值得一提的是我们这里的权限规则声明中有一个nonResourceURLs
的属性,是用来对非资源型 metrics 进行操作的权限声明,这个在以前我们很少遇到过,然后直接创建上面的资源对象即可:
[root@k8s-master prometheus]# kubectl create -f prometheus-rbac.yaml
serviceaccount/prometheus created
clusterrole.rbac.authorization.k8s.io/prometheus created
Warning: rbac.authorization.k8s.io/v1beta1 ClusterRoleBinding is deprecated in v1.17+, unavailable in v1.22+; use rbac.authorization.k8s.io/v1 ClusterRoleBinding
clusterrolebinding.rbac.authorization.k8s.io/prometheus created
还有一个要注意的地方是我们这里必须要添加一个securityContext
的属性,将其中的runAsUser
设置为0,这是因为现在的 prometheus 运行过程中使用的用户是 nobody,否则会出现下面的permission denied
之类的权限错误。
现在我们就可以添加 promethues 的资源对象了:
[root@k8s-master prometheus]# kubectl create -f prometheus-deploy.yaml
deployment.apps/prometheus created
[root@k8s-master prometheus]# kubectl get pods -n kube-mon
NAME READY STATUS RESTARTS AGE
prometheus-75d4666dcd-vlth8 1/1 Running 0 3m38s
[root@k8s-master prometheus]# kubectl logs -f prometheus-75d4666dcd-vlth8 -n kube-mon
level=info ts=2022-09-02T13:41:33.137073775Z caller=main.go:238 msg="Starting Prometheus" version="(version=2.4.3, branch=HEAD, revision=167a4b4e73a8eca8df648d2d2043e21bdb9a7449)"
level=info ts=2022-09-02T13:41:33.137157695Z caller=main.go:239 build_context="(go=go1.11.1, user=root@1e42b46043e9, date=20181004-08:42:02)"
level=info ts=2022-09-02T13:41:33.137180961Z caller=main.go:240 host_details="(Linux 3.10.0-1160.el7.x86_64 #1 SMP Mon Oct 19 16:18:59 UTC 2020 x86_64 prometheus-75d4666dcd-vlth8 (none))"
level=info ts=2022-09-02T13:41:33.137203896Z caller=main.go:241 fd_limits="(soft=1048576, hard=1048576)"
level=info ts=2022-09-02T13:41:33.137225997Z caller=main.go:242 vm_limits="(soft=unlimited, hard=unlimited)"
level=info ts=2022-09-02T13:41:33.138994196Z caller=main.go:554 msg="Starting TSDB ..."
level=info ts=2022-09-02T13:41:33.139043277Z caller=web.go:397 component=web msg="Start listening for connections" address=0.0.0.0:9090
level=info ts=2022-09-02T13:41:33.238333358Z caller=main.go:564 msg="TSDB started"
level=info ts=2022-09-02T13:41:33.238387474Z caller=main.go:624 msg="Loading configuration file" filename=/etc/prometheus/prometheus.yml
level=info ts=2022-09-02T13:41:33.238746418Z caller=main.go:650 msg="Completed loading of configuration file" filename=/etc/prometheus/prometheus.yml
level=info ts=2022-09-02T13:41:33.238766573Z caller=main.go:523 msg="Server is ready to receive web requests."
Pod 创建成功后,为了能够在外部访问到 prometheus 的 webui 服务,我们还需要创建一个 Service 对象:prometheus-svc.yaml
apiVersion: v1
kind: Service
metadata:
name: prometheus
namespace: kube-mon
labels:
app: prometheus
spec:
selector:
app: prometheus
type: NodePort
ports:
- name: web
port: 9090
targetPort: http
为了方便测试,我们这里创建一个NodePort
类型的服务,当然我们可以创建一个Ingress
对象,通过域名来进行访问:
[root@k8s-master prometheus]# kubectl create -f prometheus-svc.yaml
service/prometheus created
[root@k8s-master prometheus]# kubectl get svc -n kube-mon
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
prometheus NodePort 10.96.146.110 <none> 9090:32640/TCP 7s
然后我们就可以通过http://任意节点IP:32640访问 prometheus 的 webui 服务了。
现在我们可以查看当前监控系统中的一些监控目标(Status -> Targets):
由于我们现在还没有配置任何的报警信息,所以 Alerts 菜单下面现在没有任何数据,隔一会儿,我们可以去 Graph 菜单下面查看我们抓取的 prometheus 本身的一些监控数据了,其中- insert metrics at cursor -
下面就是我们搜集到的一些监控数据指标:
比如我们这里就选择scrape_duration_seconds
这个指标,然后点击Execute
,如果这个时候没有查询到任何数据,我们可以切换到Graph
这个 tab 下面重新选择下时间,选择到当前的时间点,重新执行,就可以看到类似于下面的图表数据了:
除了简单的直接使用采集到的一些监控指标数据之外,这个时候也可以使用强大的 PromQL
工具,PromQL
其实就是 prometheus 便于数据聚合展示开发的一套 ad hoc
查询语言的,你想要查什么找对应函数取你的数据好了。
所用到的资源文件如下:
[root@k8s-master prometheus]# tree
.
├── prometheus-cm.yaml
├── prometheus-deploy.yaml
├── prometheus-rbac.yaml
├── prometheus-svc.yaml
└── prometheus-volume.yaml
prometheus-cm.yaml 内容如下:
apiVersion: v1
kind: ConfigMap
metadata:
name: prometheus-config
namespace: kube-mon
data:
prometheus.yml: |
global:
scrape_interval: 15s
scrape_timeout: 15s
scrape_configs:
- job_name: 'prometheus'
static_configs:
- targets: ['localhost:9090']